
Duel and Sweep Algorithm for Order-Preserving
Pattern Matching

Davaajav Jargalsaikhan(B), Diptarama, Yohei Ueki, Ryo Yoshinaka,
and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University,
6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan

{davaajav,ry,ayumi}@ecei.tohoku.ac.jp,
{diptarama,yohei ueki}@shino.ecei.tohoku.ac.jp

Abstract. Given a text and a pattern over an alphabet, the classic
exact matching problem searches for all occurrences of the pattern in the
text. Unlike exact matching, order-preserving pattern matching (OPPM)
considers the relative order of elements, rather t han their real values.
In this paper, we propose an efficient algorithm for the OPPM problem
using the “duel-and-sweep” paradigm. For a pattern of length m and a
text of length n, our algorithm runs in O(n + m logm) time in general,
and in O(n + m) time under an assumption that the characters in a
string can be sorted in linear time with respect to the string size. We
also perform experiments and show that our algorithm is faster than the
KMP-based algorithm.

Keywords: Order-preserving pattern matching · Duel-and-sweep

1 Introduction

The exact string matching problem is one of the most widely studied problems.
Given a text and a pattern, the exact matching problem searches for all occur-
rence positions of the pattern in the text. Many pattern matching algorithms
have been proposed such as the well-known Knuth-Morris-Pratt algorithm [15],
Boyer-Moore algorithm [2], and Horspool algorithm [13]. These algorithms pre-
process the pattern first and then match the pattern from its prefix or suffix
when comparing it with the text. Vishkin proposed two algorithms for pattern
matching, pattern matching by duel-and-sweep [18] and pattern matching by
sampling [19]. Both algorithms match the pattern to a substring of the text from
some positions which are determined by the property of the pattern, instead of
its prefix or suffix. These algorithms are developed also for parallel processing.

Furthermore, variants of Vishkin’s duel-and-sweep algorithm have been
developed for other types of pattern matching. Amir et al. [1] proposed a duel-
and-sweep algorithm for the two-dimensional pattern matching problem. Cole
et al. [7] generalized it for two-dimensional parameterized pattern matching. The
aim of this paper is to show that the duel-and-sweep paradigm is also useful for
c© Springer International Publishing AG 2018
A M. Tjoa et al. (Eds.): SOFSEM 2018, LNCS 10706, pp. 624–635, 2018.
https://doi.org/10.1007/978-3-319-73117-9_44

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 625

another variant of pattern matching, namely, order-preserving pattern matching
(OPPM).

Unlike the exact matching problem, OPPM considers the relative order of
elements, rather than their real values. Order-preserving matching has gained
much interest in recent years, due to its applicability in problems where the
relative order matters, such as share prices in stock markets, weather data or
musical notes. The difficulty of OPPM mainly comes from the fact that we
cannot determine the isomorphism by comparing the symbols in the text and
the pattern on each position independently; instead, we have to consider their
respective relative orders in the pattern and in the text.

Kubica et al. [16] and Kim et al. [14] independently proposed the same solu-
tion for OPPM based on the KMP algorithm. Their KMP-based algorithm runs
in O(n + m log m) time. Cho et al. [6] brought forward another algorithm based
on the Horspool algorithm that uses q-grams, which was proven to be experi-
mentally fast. Crochemore et al. [8] proposed useful data structures for OPPM.
On the other hand, Chhabra and Tarhio [5], Faro and Külekci [10] proposed fil-
tration methods which are practically fast. Moreover, faster filtration algorithms
using SIMD (Single Instruction Multiple Data) instructions were proposed by
Cantone et al. [3], Chhabra et al. [4] and Ueki et al. [17]. They showed that
SIMD instructions are effective in speeding up their algorithms.

In this paper, we propose a new algorithm for OPPM based on the duel-and-
sweep technique. Our algorithm runs in O(n + m log m) time which is as fast
as the KMP based algorithm. Moreover, we perform experiments to compare
those algorithms, which show that our algorithm is faster than the KMP-based
algorithm.

The rest of the paper is organized as follows. In Sect. 2, we give preliminaries
on the problem. We describe our algorithm for the OPPM problem in Sect. 3.
Section 4 shows some experimental results that compare the performance of our
algorithm with the KMP-based algorithm. In Sect. 5, we conclude our work and
discuss future directions.

2 Preliminaries

We use Σ to denote an alphabet of integer symbols such that the comparison
of any two symbols can be done in constant time. Σ∗ denotes the set of strings
over the alphabet Σ. For a string S ∈ Σ∗, we will denote the i-th element of
S by S[i] and the substring of S that starts at the location i and ends at j as
S[i :j]. We say that two strings S and T of equal length n are order-isomorphic,
written S ≈ T , if

S[i] ≤ S[j] ⇐⇒ T [i] ≤ T [j] for all 1 ≤ i, j ≤ n.

For instance, (12, 35, 5) ≈ (25, 30, 21) �≈ (11, 13, 20).

626 D. Jargalsaikhan et al.

In order to check the order-isomorphism of two strings, Kubica et al. [16]
defined useful arrays1 LmaxS and LminS by

LmaxS [i] = j (j < i) if S[j] = max
k<i

{S[k] | S[k] ≤ S[i]}, (1)

LminS [i] = j (j < i) if S[j] = min
k<i

{S[k] | S[k] ≥ S[i]}. (2)

We use the rightmost (largest) j if there exist more than one such j. If there is no
such j then we define LminS [i] = 0 and LmaxS [i] = 0. From the definition, we
can easily observe the following properties. Unless LmaxS [i] = 0 or LminS [i] = 0,

S[LmaxS [i]] = S[i] ⇐⇒ S[i] = S[LminS [i]], (3)
S[LmaxS [i]] < S[i] ⇐⇒ S[i] < S[LminS [i]]. (4)

Lemma 1 [16]. For a string S, let sort(S) be the time required to sort the
elements of S. LmaxS and LminS can be computed in O(sort(S) + |S|) time.

Thus, LmaxS and LminS can be computed in O(|S| log |S|) time in general.
Moreover, the computation can be done in O(|S|) time under a natural assump-
tion [16] that the characters of S are elements of the set {1, . . . , |S|O(1)}. By
using LmaxS and LminS , the order-isomorphism of two strings can be decided
as follows.

Lemma 2 [6]. For two strings S and T of length n, assume that S[1 :j] ≈ T [1 :j]
for some j < n. Moreover assume that LmaxS [j + 1] �= 0 and LminS [j + 1] �= 0.
Let imax = LmaxS [j +1] and imin = LminS [j +1]. Then S[1 :j +1] ≈ T [1 :j +1]
if and only if either of the following two conditions holds.

S[imax] = S[j + 1] = S[imin] ∧ T [imax] = T [j + 1] = T [imin], (5)
S[imax] < S[j + 1] < S[imin] ∧ T [imax] < T [j + 1] < T [imin]. (6)

Corollary 1. Suppose that P [1 : j − 1] ≈ Q[1 : j − 1] and P [1 : j] �≈ Q[1 : j]
for two strings P and Q of length at least j. For imax = LmaxP [j] and imin =
LminP [j], if imax , imin �= 0, we have

P [j] = P [imax] ∧ Q[j] �= Q[imax]
∨ P [j] = P [imin] ∧ Q[j] �= Q[imin]
∨ P [j] > P [imax] ∧ Q[j] ≤ Q[imax]
∨ P [j] < P [imin] ∧ Q[j] ≥ Q[imin].

The order preserving-pattern matching problem is defined as follows.

1 Similar arrays PrevS and NextS are introduced in [12].

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 627

Definition 1 (OPPM problem).

Input: A text T ∈ Σ∗ of length n and a pattern P ∈ Σ∗ of length m ≤ n.
Output: All occurrence positions of substrings of T that are order-isomorphic

to P .

Hasan et al. [12] proposed a modification to Z-function, which Gusfield [11]
defined for ordinary pattern matching, to make it useful from the order-
preserving point of view. For a string S, the (modified) Z-array of S is defined
by

ZS [i] = max
1≤j≤|S|−i+1

{j | S[1 : j] ≈ S[i : i + j − 1]} for each 1 ≤ i ≤ |S|.

In other words, ZS [i] is the length of the longest substring of S that starts at
position i and is order-isomorphic to some prefix of S. An example of Z-array is
illustrated in Table 1.

Table 1. Z-array of a string S = (18, 22, 12, 50, 10, 17). For instance, ZS [3] = 3
because S[1 : 3] = (18, 22, 12) ≈ (12, 50, 10) = S[3 : 5] and S[1 : 4] = (18, 22, 12, 50) �≈
(12, 50, 10, 17) = S[3 :6]. LmaxS and LminS are also shown.

1 2 3 4 5 6

S 18 22 12 50 10 17

ZS 6 1 3 1 2 1

LmaxS 0 1 0 2 0 3

LminS 0 0 1 0 3 1

Lemma 3 [12]. For a string S, the Z-array ZS can be computed in O(|S|) time,
assuming that LmaxS and LminS are already computed.

Note that in their original work, Hasan et al. [12] assumed that each character
in S is distinct. However, we can extend their algorithm by using Lemma 2 to
verify order-isomorphism even when S contains duplicate characters.

In the remainder of this paper, we fix a text T of length n and a pattern P
of length m.

3 Duel-and-sweep Algorithm for Order-Preserving
Matching

In this section, we will propose an algorithm for OPPM based on the “duel-and-
sweep” paradigm [1,18]. The duel-and-sweep paradigm screens all substrings
of length m of the text, called candidates, in two stages, called the dueling
and sweeping stages. Suppose when P is superimposed on itself with the offset

628 D. Jargalsaikhan et al.

a < m, the two overlapped substrings of P are not order-isomorphic. Then it
is impossible that two candidates with offset a are both order-isomorphic to P .
The dueling stage lets each pair of candidates with such an offset a “duel” and
eliminates one based on this observation. This test is quick but not perfect. This
stage can remove many candidates, although there would still remain candidates
which are actually not order-isomorphic to the pattern. On the other hand, it
is guaranteed that if distinct candidates that survive the dueling stage overlap,
their prefixes of certain length are order-isomorphic. The sweeping stage takes
the advantage of this property when checking the order-isomorphism between
surviving candidates and the pattern so that this stage can be done also quickly.

Prior to the dueling stage, the pattern is preprocessed to construct a wit-
ness table based on which the dueling stage decides which pair of overlapping
candidates should duel and how they should duel.

3.1 Pattern Preprocessing

For each offset 0 < a < m, the original duel-and-sweep algorithm [18] saves a
position i such that P [i] �= P [i + a]. However, in order-preserving pattern match-
ing, the order-isomorphism of two strings cannot be determined by comparing a
symbol in one position. We need two positions as a witness to say that the two
strings are not order-isomorphic. Therefore, for each offset 0 < a < m, when the
overlapped regions obtained by superimposing P on itself with offset a are not
order-isomorphic, we use a pair 〈i, j〉 of locations called a witness pair for the
offset a if either of the following holds:

• P [i] = P [j] and P [i + a] �= P [j + a],
• P [i] > P [j] and P [i + a] ≤ P [j + a],
• P [i] < P [j] and P [i + a] ≥ P [j + a].

Next, we describe how to construct a witness table for P , that stores witness
pairs for all possible offsets a (0 < a < m). The witness table WITP is an
array of length m − 1, such that WITP [a] is a witness pair for offset a. In the
case when there are multiple witness pairs for offset a, we take the pair 〈i, j〉
with the smallest value of j and some i < j. When the overlap regions are order-
isomorphic for offset a, which implies that no witness pair exists for a, we express
it as WITP [a] = 〈0, 0〉. Table 2 shows an example of a witness table.

Table 2. Witness table WITP for a string P = (18, 22, 12, 50, 10, 17). For instance, the
witness pair WITP [2] for offset 2 is 〈2, 4〉, due to P [2] = 22 < 50 = P [4] and P [2 + 2] =
50 > 17 = P [4 + 2]. On the other hand, WITP [4] = 〈0, 0〉, since P [1 : 2] ≈ P [5 : 6].

1 2 3 4 5 6

P 18 22 12 50 10 17

WITP 〈1, 2〉 〈2, 4〉 〈1, 2〉 〈0, 0〉 〈0, 0〉 –

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 629

Algorithm 1. Algorithm for constructing the witness table WITP

1 Function Witness(P) /* Construct the witness table WITP */

2 compute the Z-array ZP for the pattern P ;
3 for a = 1 to m − 1 do
4 j = ZP [a + 1] + 1, imin = LminP [j] and imax = LmaxP [j];
5 if j = m − a + 1 then WITP [a] = 〈0, 0〉;
6 else if imax = 0 then WITP [a] = 〈imin , j〉;
7 else if imin = 0 then WITP [a] = 〈imax , j〉;
8 else if P [imin] = P [j] ∧ P [imin + a] �= P [j + a]
9 ∨ P [imin] > P [j] ∧ P [imin + a] ≤ P [j + a] then

10 WITP [a] = 〈imin , j〉
11 else
12 WITP [a] = 〈imax , j〉

Lemma 4. For a pattern P of length m, Algorithm 1 constructs WITP in O(m)
time assuming that ZP is already computed.

Proof. Clearly the algorithm runs in O(m) time.
We show that for each 1 ≤ a < m, Algorithm 1 computes WITP [a] correctly.

Recall that ZP [a + 1] is the length of the longest prefix of P [a + 1 : m] that is
order-isomorphic to a prefix of P . Let j = ZP [a + 1] + 1, for which we have
P [1 :j − 1] ≈ P [1 + a :j − 1 + a]. Suppose that j = m − a + 1. This means that
P [1 : j − 1] ≈ P [1 + a : j − 1 + a] = P [1 + a :m], i.e., there is no witness pair for
the offset a. Indeed Algorithm 1 gets WITP [a] = 〈0, 0〉 for this case.

Otherwise, we have P [1 : j] �≈ P [1 + a : j + a]. Let imax = LmaxP [j] and
imin = LminP [j]. If imax = 0, P [j] < P [k] for all k < j. Note that imin �= 0 by
j ≥ 2. Since P [1 : j − 1] ≈ P [1 + a : j − 1 + a] and P [1 : j] �≈ P [1 + a : j + a],
there exists 1 ≤ k < j such that P [j + a] ≥ P [k + a]. By P [imin] ≤ P [k] and
(P [imin], P [k]) ≈ (P [imin + a], P [k + a]), we have P [imin + a] ≤ P [k + a] ≤
P [j + a]. Therefore, 〈imin , j〉 is a witness pair for the offset a. The case where
imin = 0 can be discussed in the exactly symmetric way.

Let us assume imin �= 0 and imax �= 0. If P [imin] = P [j] ∧ P [imin + a] �=
P [j + a] or P [imin] > P [j] ∧ P [imin + a] ≤ P [j + a], clearly 〈imin , j〉 is a witness
pair for a. Otherwise, by Corollary 1, either P [imax] = P [j] ∧ P [imax + a] �=
P [j +a] or P [imax] < P [j]∧P [imax +a] ≥ P [j +a] holds, in which case 〈imax , j〉
is a witness pair for a. �

3.2 Dueling Stage

Let us denote the candidate that starts at the location x as Tx = T [x :x+m−1].
In the dueling stage, we “duel” all pairs of overlapping candidates Tx and Tx+a

such that WITP [a] �= 〈0, 0〉. Witness pairs are used in the following manner.
Suppose that WITP [a] = 〈i, j〉, where P [i] < P [j] and P [i + a] ≥ P [j + a], for
example. Then, it holds that

630 D. Jargalsaikhan et al.

Algorithm 2. Dueling
1 Function Dueling(x, a) /* Duel between candidates Tx and Tx+a */

2 〈i, j〉 = WITP [a];
3 if P [i] = P [j] then
4 if T [x + a + i − 1] �= T [x + a + j − 1] then return x;
5 else return x + a;

6 if P [i] < P [j] then
7 if T [x + a + i − 1] ≥ T [x + a + j − 1] then return x;
8 else return x + a;

9 if P [i] > P [j] then
10 if T [x + a + i − 1] ≤ T [x + a + j − 1] then return x;
11 else return x + a;

• if T [x + a + i − 1] ≥ T [x + a + j − 1], then Tx+a �≈ P ,
• if T [x + a + i − 1] < T [x + a + j − 1], then Tx �≈ P .

Based on this observation, we can safely eliminate either candidate Tx or Tx+a

without looking into other locations. We can perform this process similarly for
other equality/inequality cases. This process is called dueling. The procedure for
all cases of the dueling is described in Algorithm 2.

On the other hand, if Tx and Tx+a do not overlap or the offset a has no
witness pair, i.e. P [1 : m − a] ≈ P [a + 1 : m], no dueling is performed on them.
We say that a position x is consistent with x + a if either 0 < a < m and
WITP [a] = 〈0, 0〉 or a ≥ m. Note that the consistency property is determined by
a and P only, and x and T are irrelevant. The consistency property is transitive.

Lemma 5. For any a, b and x such that 1 ≤ a < a + b < m and 1 ≤ x <
m − a − b, if x is consistent with x + a and x + a is consistent with x + a + b,
then x is consistent with x + a + b.

Proof. Since x is consistent with x + a, it follows that P [1 :m−a] ≈ P [a+1:m],
so that P [b + 1:m − a] ≈ P [(a + b) + 1 :m]. Moreover, since x + a is consistent
with x + a + b, it follows that P [1 :m−b] ≈ P [b+1:m], so that P [1 :m−b−a] ≈
P [b + 1:m − a]. Thus, P [1 :m − (a + b)] ≈ P [(a + b) + 1:m], which implies that
x is consistent with x + a + b. �

The whole process of the dueling stage is shown in Algorithm 3, which follows
Amir et al. [1] for ordinary pattern matching. This stage eliminates candidates
until all surviving candidates are pairwise consistent. The algorithm uses a stack
to maintain candidates which are consistent with each other. A new candidate
y will be pushed to the stack if the stack is empty. Otherwise y is checked
by comparing it to the topmost element x of the stack. By Lemma 5, if x is
consistent with y, all the other elements in the stack are consistent with y, too.
Thus we can push y to the stack. On the other hand, if x is not consistent with
y, we should exclude one of the candidates by dueling them. If x wins the duel,

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 631

Algorithm 3. The dueling stage algorithm
1 Function DuelingStage(P, T)
2 create stack ;
3 for y = 1 to n − m + 1 do
4 while stack is not empty do
5 pop x from stack ;
6 if y − x ≥ m or WITP [y − x] = 〈0, 0〉 then
7 push x and y to stack ;
8 break;

9 else
10 z = Dueling(x, y − x);
11 if z = x then
12 push x to stack ;
13 break;

14 if stack is empty then
15 push y to stack ;

we put x back to the stack, discard y, and get a new candidate. If y wins the
duel, we exclude x and continue comparison of y with the top element of the
stack unless the stack is empty. If the stack is empty, y will be pushed to the
stack. Figure 1 gives an example run of the dueling stage.

Lemma 6 [1]. The dueling stage can be done in O(n) time by using WITP .

3.3 Sweeping Stage

The goal of the sweeping stage is to prune inconsistent candidates until all
remaining candidates are order-isomorphic to the pattern P . Suppose that we
need to check whether some surviving candidate Tx is order-isomorphic to P .
It suffices to successively check the conditions (5) and (6) in Lemma 2, starting
from the leftmost location in Tx. If the conditions are satisfied for all locations
in Tx, then Tx ≈ P . Otherwise, Tx �≈ P , and obtain a mismatch position j.

A Naive implementation of sweeping requires O(n2) time. Algorithm 4 takes
advantage of the fact that all the remaining candidates are pairwise consistent,
we can reduce the time complexity to O(n) time. Suppose there is a mismatch
at position j when comparing P with Tx, that is, Tx[1 : j − 1] ≈ P [1 : j − 1]
and Tx[1 : j] �≈ P [1 : j]. If the next candidate is Tx+a with a < j, since P [1 :
j − a − 1] ≈ P [a + 1 : j − 1] ≈ Tx[a + 1 : j − 1] = Tx+a[1 : j − a − 1], we can
start comparison of P and Tx+a from the position where the mismatch with Tx

occurred. If P ≈ Tx, the above discussion holds for j = m + 1. Therefore, the
total number of comparison is bounded by O(n), by applying the same argument
on the complexity of the KMP algorithm for exact matching.

Lemma 7. The sweeping stage can be completed in O(n) time.

632 D. Jargalsaikhan et al.

Fig. 1. An example run of the dueling stage for T = (8, 13, 5, 21, 14, 18, 20, 25, 15, 22),
P = (12, 50, 10, 17), and WITP = (〈1, 2〉, 〈0, 0〉, 〈0, 0〉). First, the position 1 is pushed
to the stack. Next, T2 duels with T1 and then T2 loses because P [1] < P [2] and
T2[1] > T2[2]. The next position 3 is pushed to the stack by WITP [3 − 1] = 〈0, 0〉.
Similarly, T4 loses against T3, and 5 is accepted to the stack. For y = 6, T5 is removed
and T6 is added because P [1] < P [2], T6[1] < T6[2], and 3 is consistent with 6. Finally
T7 defeats T6 and the contents of the stack become 1, 3, and 7.

By Lemmas 4, 6, and 7, we summarize this section as follows.

Theorem 1. Given a text T of length n and a pattern P of length m, the
duel-and-sweep algorithm solves the OPPM Problem in O(n + m log m) time.
Moreover, the running time is O(n + m) under the natural assumption that the
characters of P can be sorted in O(m) time.

4 Experiments

In order to compare the performance of proposed algorithm with the KMP-
based algorithm [14,16] on solving the OPPM problem, we performed two sets
of experiments. In the first experiment set, the pattern size m is fixed to 10, while
the text size n is changed from 100000 to 1000000. In the second experiment set,
the text size n is fixed to 1000000 while the pattern size m is changed from 5 to
100. We measured the average of running time and the number of comparisons
for 50 repetitions on each experiment. We used randomly generated texts and
patterns with alphabet size |Σ| = 1000. Experiments are executed on a machine
with Intel Xeon CPU E5-2609 8 cores 2.40 GHz, 256 GB memory, and Debian
Wheezy operating system.

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 633

Algorithm 4. The sweeping stage algorithm
1 Function SweepingStage()

2 while there are unchecked candidates to the right of Tx do
3 let Tx be the leftmost unchecked candidate;
4 if there are no candidates overlapping with Tx then
5 if Tx �≈ P then eliminate Tx;
6 else
7 let Tx+a be the leftmost candidate that overlaps with Tx;
8 if Tx ≈ P then start checking Tx+a from the location m − a + 1;
9 else

10 let j be the mismatch position;
11 eliminate Tx;
12 start checking Tx+a from the location j − a;

The results of our experiments are shown in Figs. 2 and 3. We can see that
our algorithm is better than the KMP-based algorithm in running time and the
number of comparisons when the pattern size and text size are large. However,
our algorithm was slower when the pattern is very short, namely m = 5. The
reason why the proposed algorithm makes fewer comparisons than the KMP-
based algorithm may be explained as follows. The KMP-based algorithm relies
on Lemma 2, which compares symbols at three positions2 to check the order-
isomorphism between a prefix of the pattern and a substring of the text when
the prefix is extended by one. On the other hand, the dueling stage of our
algorithm compares only two positions determined by the witness table. By
pruning candidates in the dueling phase, the number of precise tests of order-
isomorphism in the sweeping stage is reduced.

Fig. 2. Running time of the algorithms with respect to (a) text length, and (b) pattern
length.

2 Each of (5) and (6) of Lemma 2 involves four (in)equalities but checking three is
enough thanks to the properties (3) and (4).

634 D. Jargalsaikhan et al.

Fig. 3. Number of comparisons in the algorithms with respect to (a) text length, and
(b) pattern length.

5 Discussion

We proposed a new algorithm for the OPPM problem by extending Vishkin’s
duel-and-sweep algorithm [18] for the exact matching problem. Our algorithm
runs in linear time, that is theoretically fast. The experimental results showed
that our algorithm is practically faster than the KMP-based algorithm [14,16],
which has the same theoretical running time. Actually, our algorithm makes
fewer comparisons than the KMP-based algorithm.

Since Vishkin’s algorithm has been designed for parallel computing [18], we
expect that our duel-and-sweep algorithm for order preserving pattern match-
ing could also be extended for parallel computing. This extension is not trivial
because the periodicity property of a string in order preserving pattern matching
is different from the one in ordinary pattern matching.

Another potential of the duel-and-sweep paradigm is in solving two-
dimensional pattern matching problems. Amir et al. [1] and Cole et al. [7]
have designed duel-and-sweep algorithms for solving two-dimensional exact and
parameterized pattern matching problems, respectively. Currently no fast algo-
rithm for the two-dimensional order-preserving pattern matching problem has
been proposed. Actually we have already developed a dueling algorithm for two-
dimensional OPPM that runs in linear time with respect to the input text size [9].
However, we do not have a linear time algorithm for the sweeping stage yet. We
hope the two-dimensional OPPM problem can be solved more efficiently by find-
ing a more sophisticated method based on some combinatorial properties, like
Cole et al. did for the two-dimensional parameterized matching problem. This
is left for future work.

Acknowledgements. This work is supported by Tohoku University Division for
Interdisciplinary Advance Research and Education, ImPACT Program of Council for
Science, Technology and Innovation (Cabinet Office, Government of Japan), and JSPS
KAKENHI Grant Number JP15H05706.

Duel and Sweep Algorithm for Order-Preserving Pattern Matching 635

References

1. Amir, A., Benson, G., Farach, M.: An alphabet independent approach to two-
dimensional pattern matching. SIAM J. Comput. 23(2), 313–323 (1994)

2. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

3. Cantone, D., Faro, S., Külekci, M.O.: An efficient skip-search approach to the
order-preserving pattern matching problem. In: PSC, pp. 22–35 (2015)

4. Chhabra, T., Külekci, M.O., Tarhio, J.: Alternative algorithms for order-preserving
matching. In: PSC, pp. 36–46 (2015)

5. Chhabra, T., Tarhio, J.: A filtration method for order-preserving matching. Inf.
Process. Lett. 116(2), 71–74 (2016)

6. Cho, S., Na, J.C., Park, K., Sim, J.S.: A fast algorithm for order-preserving pattern
matching. Inf. Process. Lett. 115(2), 397–402 (2015)

7. Cole, R., Hazay, C., Lewenstein, M., Tsur, D.: Two-dimensional parameterized
matching. ACM Trans. Algorithms 11(2), 12:1–12:30 (2014)

8. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Waleń, T.: Order-preserving indexing. Theor.
Comput. Sci. Pattern Matching 638, 122–135 (2016). Text Data Structures and
Compression

9. Davaajav, J.: A study on the two-dimensional order-preserving matching problem.
Bachelor thesis, Tohoku University (2017)

10. Faro, S., Külekci, M.O.: Efficient algorithms for the order preserving pattern match-
ing problem. In: Dondi, R., Fertin, G., Mauri, G. (eds.) AAIM 2016. LNCS, vol.
9778, pp. 185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41168-2 16

11. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

12. Hasan, M.M., Islam, A.S., Rahman, M.S., Rahman, M.S.: Order preserving pattern
matching revisited. Pattern Recogn. Lett. 55, 15–21 (2015)

13. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Experience 10(6),
501–506 (1980)

14. Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi,
S.J., Tokuyama, T.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79
(2014)

15. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

16. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear
time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.
113(12), 430–433 (2013)

17. Ueki, Y., Narisawa, K., Shinohara, A.: A fast order-preserving matching with q-
neighborhood filtration using SIMD instructions. In: SOFSEM (Student Research
Forum Papers/Posters), pp. 108–115 (2016)

18. Vishkin, U.: Optimal parallel pattern matching in strings. In: Brauer, W. (ed.)
ICALP 1985. LNCS, vol. 194, pp. 497–508. Springer, Heidelberg (1985). https://
doi.org/10.1007/BFb0015775

19. Vishkin, U.: Deterministic sampling - a new technique for fast pattern matching.
SIAM J. Comput. 20(1), 22–40 (1991)

https://doi.org/10.1007/978-3-319-41168-2_16
https://doi.org/10.1007/978-3-319-41168-2_16
https://doi.org/10.1007/BFb0015775
https://doi.org/10.1007/BFb0015775

	Duel and Sweep Algorithm for Order-Preserving Pattern Matching
	1 Introduction
	2 Preliminaries
	3 Duel-and-sweep Algorithm for Order-Preserving Matching
	3.1 Pattern Preprocessing
	3.2 Dueling Stage
	3.3 Sweeping Stage

	4 Experiments
	5 Discussion
	References

